Hydrologic similarity based on width function and hypsometry: An unsupervised learning approach

نویسندگان

چکیده

The prediction of hydrologic conditions in watersheds has manifold applications, ranging from flood disaster preparedness to water supply and environmental flow management. In with scarce or no data, it is difficult make accurate predictions. Past work used similarity single-valued properties the terrain (for example, drainage area, mean slope) as basis relate gauged ungauged ones. resulting predictions show modest accuracy have a weak physical basis. this study, we develop physics-informed machine learning approach extract features that represent dynamics — width function hypsometric curve. These two geomorphometric measures are computed using functional forms fitted estimates derived digital elevation data. Furthermore, dynamically-similar groups identified based on results unsupervised clustering divergence measures. Our paves way towards flexible scalable can be assess improve prediction, one informed by physics surface generation transport watersheds. A case study involving 72 sub-watersheds Narmada River Basin (India) illustrate new methodology.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

compactifications and function spaces on weighted semigruops

chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...

15 صفحه اول

Efficient Similarity Joinmethodusing Unsupervised Learning

This paper proposes an efficient similarity join method using unsupervised learning, when no labeled data is available. In our previous work, we showed that the performance of similarity join could improve when long string attributes, such as paper abstracts, movie summaries, product descriptions, and user feedback, are used under supervised learning, where a training set exists. In this work, ...

متن کامل

an investigation into the impact of m-game-enhanced blended module of teaching and learning on iranian students english literacy skills and subskills learning

پژوهش حاضر با پیوند رسانه های قدیمی و جدید یاد دهی و یادگیری _طرح داستان و بازی های همراه ــ در یک پو دمان ترکیبی، در صدد قیاس شیوه ی یاد دهی و یادگیری مبتنی بر بازی مهارت های فرعی و اصلی واژگان، خواندن و نوشتار سواد انگلیسی با شیوه های مرسوم آن بود. به این منظور با کاربرد یک طرح سه گانه همراه با الگوی نظام آموزشی (تومی، 2010)، بازی های از پیش ساخته شده و بومی قابل عرضه از طریق ارتباطات سیّار (ب...

An Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network

RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...

متن کامل

An Unsupervised Learning based Approach for Unexpected Event Detection

This paper presents a generic unsupervised learning based solution to unexpected event detection from a static uncalibrated camera. The system can be represented into a probabilistic framework in which the detection is achieved by a likelihood based decision. We propose an original method to approximate the likelihood function using a sparse vector machine based model. This model is then used t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Geosciences

سال: 2022

ISSN: ['1873-7803', '0098-3004']

DOI: https://doi.org/10.1016/j.cageo.2022.105097